If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y-15y^2=0
a = -15; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-15)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-15}=\frac{-40}{-30} =1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-15}=\frac{0}{-30} =0 $
| 1/x=1/2/4/4 | | 30+9x-30=90 | | 144*12=r | | 3a+49=8a+124 | | 12+4x=-8+8x | | 2r+3=3r-3 | | 2(y+10)=31 | | -4(x+3)=-2(x+8) | | .2x+2-3x+5=3+2 | | 92.5x=100 | | 2/5(15x-5)=-8 | | 4n-14=17 | | (9x+2)^2=9 | | 7(y+37)=-18 | | 8m-97=2m+17 | | -5g-15=55 | | (x-7)^2=-2 | | 5a+(2-4a)=0 | | 7x+14=294 | | 75-(3*m)=27 | | 115=(x+5) | | x2.2-1.1=2.9 | | 6x2+4X-16=0 | | -10+4k=-14 | | -2(x-4)=-4x+16 | | (4x-15)=(x+90) | | 4p+1=2p+7 | | 2s–12=–8 | | (7x+2)^(2)+6(7x+2)=(27)=27 | | 1/2^x-6=1/4 | | 3^-2x=1/729 | | 2^5+x=1/16 |